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Abstract

We can learn what extinct languages sounded
like through proto-form reconstruction by trac-
ing back phonological and grammatical shifts.
Meloni et al. (2021) and Kim et al. (2023) have
developed supervised neural models that have
achieved state-of-the-art results for reconstruct-
ing Latin and Middle Chinese, as the wealth
of written records for these languages provide
ample data to train their models on. We provide
the first cognate dataset of Germanic languages
for reconstructing Proto-Germanic, a language
with no written records. Training a neural trans-
former model on variations of the dataset, re-
veals that not all descendant languages con-
tribute equally and that removing sparse entries
greatly improves performance, achieving com-
parable results with other datasets. Error analy-
sis exposes a need for grammatical information
to infer complex morphological patterns while
analyzing the model’s reconstructions shows
that the model learns meaningful generaliza-
tions and is able to infer patterns of phonologi-
cal change.

1 Introduction

Languages are constantly evolving as today’s
newest slang becomes tomorrow’s standard speech.
In a similar process to the evolution of species, a
language’s dialects can split-off and diverge un-
til they become mutually unintelligible daughter
languages. For the Germanic languages, this di-
vergence happened around first and second cen-
turies CE (van Coetsem and Kufner, 1972), with the
ancestor language being termed Proto-Germanic
(PGmc).

Proto-form reconstruction (PFR) is the task of
deriving the words of an extinct language based
on its attested descendants. Linguists are able to
reconstruct these “proto-languages" by comparing
cognates (words with a common origin) and de-
riving patterns of phonological change over these
languages’ evolution. Table 1 gives an example

Eng. Ger. Swe. Icel. PGmc
mother Mutter moder mddir moder
father Vater fader fadir fadér
weather Wetter viader vedur wedra
fother Futter foder f60ur fodrg

Table 1: Corresponding sounds in modern Germanic
cognates and their Proto-Germanic (PGmc) ancestor.

of how the PGmc phoneme /d/ has evolved in its
descendant languages through systematic phono-
logical shifts.

To deduce these phonological patterns a large set
of cognates is required. This is even more essential
when employing machine learning methods, as cur-
rent model architectures, such as recurrent neural
networks (RNNs) and transformer models, require
large amounts of data for accurate prediction. For
supervised automatic PFR, we are therefore lim-
ited to well-resourced language families, or to those
with a recent point of divergence where cognates
and phonological shifts can be traced more easily.

The Germanic languages are an example of a
family that has been extensively researched, with
a large lexicon of reconstructed Proto-Germanic
words. This makes PGmc an ideal candidate for re-
construction with machine learning methods. Nev-
ertheless, modern machine learning architectures
are notoriously data-hungry, placing a burden on
the data collection to be as extensive and balanced
as possible. This paper aims to answer whether
a dataset of Germanic cognates can be obtained
from publicly available data for accurate automatic
Proto-Germanic reconstruction capable of inferring
phonological patterns.

1.1 Contributions

We have compiled the first dataset of Germanic
language cognates, each cognate-set matched with
a corresponding PGmc ancestor word. The dataset
was constructed from publicly available data on



Wiktionary, resulting in both an orthographic and
phonological dataset.

We further used this dataset to train two state-
of-the-art machine learning models for automatic
PFR. The models trained on our full Germanic
dataset under-perform when compared with other
reconstructions of ancestral languages. However,
the model successfully learns linguistically at-
tested phonological patterns, while committing pre-
dictable errors with linguistic sources.

Finally, the PFR model is further trained on vari-
ations of the dataset with reduced sizes. These
findings help us identify adverse entries in our
dataset which we can remove to improve a naively
constructed cognate dataset for automatic PFR.
Ultimately, we achieve comparable results with
other cognate datasets when training on a reduced
dataset.

2 Related Work

Early attempts at proto-language reconstruction
with machine learning methods aimed to explic-
itly capture the phonological changes that linguists
use. Bouchard-Coté et al. (2013) use a probabilistic
model that directly tracks sound changes, using a
Monte Carlo inference algorithm. Their model is
parameterized on a golden phylogeny of a language
family (in their case the Oceanic languages) and
takes an input of cognate-sets to produce an output
of reconstructed ancestral forms, alongside a list of
sound changes describing the evolution of the lan-
guage family. Their implementation of automatic
PFR is task inherently limited to ancestral forms
produced with direct phonological changes, failing
to capture changes in the phoneme inventories or
morphological analysis.

A resurgence in the field was more recently
brought about by Meloni et al. (2021) who take ad-
vantage of developments in machine learning and
use a more sophisticated seq2seq RNN model for
reconstructing Latin from modern languages. By
extending and existing cognate dataset with data
from Wiktionary, they are able to achieve state-
of-the art results. This model was then used by
Chang et al. (2022) to reconstruct Middle Chinese
on another dataset constructed from Wiktionary.

A SIGTYP 2022 Shared Task (List et al., 2022c)
challenges people to create cognate prediction mod-
els using the Lexibank dataset (List et al., 2022a).
This dataset, while impressive in its breadth of
languages, is insufficient for creating cognate-sets

of sufficient size for automatic PFR. For example,
Lexibank contains German has ~ 800 word entries,
most of which missing a corresponding transla-
tion in other Germanic languages. Moreover, even
when a translation is available the dataset does not
ensure that they are truly cognates.

Finally, Kim et al. (2023) take the transformer
model that has seen much success in other natu-
ral language processing applications to improve on
Meloni et al.’s (2021) approach. Like Meloni et al.
(2021), they adapt the standard encoder-decoder
architecture to accommodate the structure of cog-
nate datasets, where multiple daughter sequences
correspond to a single proto-form sequence. They
are able to improve upon Meloni et al.’s (2021)
results, consistently having the best performance
on most datasets they test.

3 The Dataset

The cognate dataset is comprised of entries con-
sisting of a Proto-Germanic word and correspond-
ing descendant words in daughter languages. It
has been made publicly available under a Creative
Commons 1.0 license!. Specifically, the dataset
contains cognates from the following languages:
Danish, Dutch, English, German, Gothic, Icelandic,
and Swedish. These languages were selected for
their large number of modern speakers correspond-
ing to more entries in Wiktionary, and for their
distinctive place in the Germanic phylogenetic tree
(Figure 1). For example, Gothic is included as the
only East Germanic language that we have a sizable
lexicon for despite long being extinct.

The dataset was created out of the entries found
in Wiktionary’s category for Proto-Germanic lem-
mas”. Each entry had its Wiktionary page scraped,
extracting the descendants corresponding to the lan-
guages in our dataset. Note that not every PGmc
word has a descendant in each of its daughter lan-
guages. As such, each entry in the data set can have
anywhere from 1 to 7 cognates (Table 2). More-
over, any capital letters and punctuation were also
normalized across the cognates.

This Wiktionary data was used directly for the
orthographic dataset. Like Meloni et al. (2021),
we further generate a phonetic dataset of IPA
phonemes by using the eSpeak library’s” text-to-

"https://github.com/PLanza/
Proto-Germanic-Cognates

2https://en.wiktionary.org/w/index.php?tit1e=
Category:Proto-Germanic_lemmas

3https://github.com/espeak—ng/espeak—ng
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Figure 1: Phylogenetic tree of the Germanic languages included in our dataset.

Netherlandic- West
German Scandinavian
English Dutch German Icelandic
Language Words
t t.
Cognates Sets English 2663
1 906
Dutch 2508
2 849
3 779 German 2717
Swedish 2270
4 581 .
Danish 1955
5 451 .
Icelandic 3232
6 723 .
Gothic 1661
7 454
Total 4736 PGmc 4736
o Total 21751

Table 2: Statistics of the data set. Cognates is the num-
ber of daughter cognates associated with a given Proto-
Germanic word.

phoneme transcription tools. All syllable stress
markers where removed from the output IPA tran-
scription. This library was used for all the modern
languages, but it unsurprisingly does not support
Gothic nor Proto-Germanic transcriptions. Never-
theless, as pronunciations for these languages are
reconstructed, they can be derived directly from
the orthography, and so we can systematically tran-
scribe the orthographic Gothic and Proto-Germanic
into IPA phonemes according to Miller (2019) and
Lehmann (2014) respectively.

The dataset was manually reviewed, checking
for any errors in the automatic scraping and IPA
generation processes. Certain PGmc words only
made it into the modern languages as a morpheme
rather than as a full word. For example, the Wik-
tionary page for the PGmc ‘*maisq’ lists the En-
glish ‘titmouse’ as a descendant since the ‘mouse’
morpheme is indeed derived from ‘*maisq’. In
such instances, we strip the duaghter word down
to the descendant morpheme. Moreover, eSpeak’s

phoneme generation also struggled with short af-
fixes, giving transcriptions of the letters’ names
(e.g. [ elw'a1] for the adverbial suffix -ly). Finally,
any entries that did not seem correct were checked
against Kroonen (2013) to verify the etymological
link.

The final dataset is comprised of 4736 cognate-
set entries with a total 21751 words. This is over
half the size of Meloni, et al.’s dataset of Ro-
mance cognates (8799) and substantially smaller
than Chang, et al’s Wikihan of Chinese cognates
(21751). However, it is still substantially larger
than any of List et al. (2022¢) Lexibank language
family cognate datasets. This demonstrates the dif-
ficulty of deriving large cognate datasets, even for
well resourced languages like the Germanic lan-
guages. Furthermore, training (80%), validation
(10%) and testing (10%) splits were generated for
training the automatic PFR models.

4 Reconstructing Proto-Germanic

The purpose of this dataset is for reconstructing
Proto-Germanic with machine learning methods.
We will be testing the adequacy of our dataset on
this task by using it to train two proto-language
reconstruction models. These are Meloni et al.
(2021) neural machine translation (NMT)-based
RNN model, and Kim, et al.’s transformer-based
model.

4.1 Preprocessing the Input

Both of the models used are seq2seq models that
take a continuous sequence as input. However, our
input data is a set of up to seven distinct daughter
cognate words. To fit the data to the models, we
concatenate the input words and encode them using
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Figure 2: Component diagram of Meloni et al.’s (2021)
RNN model. The bottom-left token sequence is the
concatenated input descendant cognate-set. The top-
right output is the Proto-Germanic prediction which is
fed back into the decoder at the next time step. The ‘$’
symbol represents a beginning of sequence token.

a character embedding table. This embedding is
further augmented with an additive language em-
bedding that imbues each character representation
with information about which descendent language
its corresponding word is from.

We also note that we do not always perform this
encoding on individual characters, especially for
the IPA inputs. The labialized velar consonants
found in Gothic and Proto-Germanic (/k“/, /g"/,
/x¥/) are composed of two Unicode characters but
should be treated as a single phoneme token. This
is similarly the case for phonemically lengthened
vowels (e.g. in /ai/) and for the variety of other dia-
critics that the languages use in their orthography
and IPA transcriptions. For these cases, we group
the multiple characters together into single tokens.

4.2 Meloni et al.’s (2021) RNN model

Meloni et al. (2021) use a Gated Recurrent Unit
(GRU) neural network model, also used for NMT
tasks (Cho et al., 2014). They notice that like
proto-word reconstruction, NMT generates words
from some source language (daughter languages)

to some target language (proto-language). Follow-
ing a seq2seq architecture, they use GRU networks
for encoding and decoding at the token level. The
encoder takes a token from an input sequence con-
taining the daughter language cognates, and out-
puts a contextualized representation that captures
information about the relationships between tokens.
As GRU networks are a kind of RNN, the encoder
generates an output representation for each token
in the input sequence, followed by and update the
network’s internal hidden state.

The decoder is also a GRU network that takes
the encoder’s final contextualized representation
as its initial state. Where the encoder used the in-
put daughter cognates sequence, the decoder now
uses the previous time step’s output as input for the
current time step. Moreover, Meloni et al. (2021)
use a dot-product attention mechanism to calcu-
lates the relevance that each part of the input has
to the output (Bahdanau et al., 2014). So given our
input consisting of the daughter cognates concate-
nated, we would imagine that the attention score
for generating the first output token will match all
the positions of the first token of each daughter
word in the input sequence.

Finally, the decoder does not output the predicted
proto-word’s characters itself, rather it gives a vec-
tor representation of these characters that is passed
on to a multi-layer perceptron (MLP). It is this per-
ceptron that takes this representation and returns
a probability distribution over the set of possible
characters, taking an argmax to select the next char-
acter in the output sequence. This architecture is
summarized in Figure 2.

4.3 Kim et al.’s (2023) Transformer-based
model

Kim et al. (2023) similarly propose an econder-
decoder model but using transformers instead, fol-
lowing recent state-of-the-art results in other nat-
ural language processing tasks. In addition to the
character and language embedding performed on
the input cognates, they further perform a posi-
tional embedding at the start. This preserves in-
formation about the positions of the tokens within
each cognate, which is necessary as transformers’
lack of recurrence means that they preserve no
sense of sequential order.

The model’s architecture follows closely that of
Vaswani et al. (2017) (Figure 3). Transformers take
the concept of attention and use it to construct the
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Figure 3: Component diagram of Kim et al.’s (2023)
transformer model. The bottom-left token sequence
is the concatenated input descendant cognate-set. The
bottom-right input is the golden Proto-Germanic word,
while the top-right output is the Proto-Germanic predic-
tion. The ‘$’ symbol represents a beginning of sequence
token.

encoder and decoder, instead of solely as a means
of communication between the two. Where an
RNN looks at each token sequentially and remem-
bers what parts of the input are relevant, attention
layers can capture the relationships between the full
input’s tokens all at once. This gives transformers
the advantage of parallelism. In the encoding phase,
each input token sees the current representation
of all the other tokens and updates its representa-
tion based on the information it has gathered about
the others through an attention mechanism; these
are the self-attention layers. Each self-attention
layer — three in our model’s case — is followed
by a position-wise feed-forward network is applied,
which introduces non-linearity to learn represen-
tations and patterns within a token’s position, not
just across positions through the attention layers.
The decoder similarly uses attention to generate
each output token. However, the decoder cannot
look ahead to future output tokens as they have
not been generated yet. Instead, self-attention is
calculated over the previous tokens. To take advan-

Lang. Family Kind Descendants Sets
Germanic Ortho. 7 4736
Phon. 7 4736
Romance Ortho. 5 5419
Phon. 5 5419
Sinitic Phon. 39 804

Table 3: Number of descendants and cognate-sets for
each dataset tested.

tage of transformer’s parallelism during training,
we provide the model with the full gold output se-
quence but mask out future tokens when perform-
ing self-attention to not violate sequential genera-
tion. Then, decoder-encoder attention updates the
output token’s representation using the encoder’s
input representations in a similar manner to how
attention was used in the RNN model. Like the en-
coder, a feed-forward network is applied after each
encoder-decoder attention layer. Finally, similar
to the RNN model, the decoder’s output is passed
through a linear layer that generates the output to-
ken’s probability distribution.

5 Experimentation

5.1 Baselines

We are aiming to determine whether our Germanic
cognate dataset is suitable for proto-form recon-
struction on the current state-of-the-art models. To
do so, we compare against two baseline datasets
that also derive their data from Wiktionary: Meloni
et al.’s (2021) Romance orthographic and phonetic
dataset, and Kim et al.’s (2023) Sinitic phonetic
dataset used to reconstruct Middle Chinese. Note
that this Romance dataset is not the full dataset that
Meloni et al. (2021) use to evaluate their model,
as part of it was constructed by Dinu and Ciobanu
(2014) and is not publicly available.

5.2 Evaluation Metrics

Levenshtein distance (Levenshtein, 1965) is the
standard metric for evaluating proto-form recon-
struction systems which measures the character dif-
ference between two strings. Specifically, it counts
the number of character insertions, deletions and
replacements that are needed to convert the source
string to the target string. Note that we consider
multi-character tokens as single characters when
calculating edit distance. However, this metric is
insufficient to compare across datasets as, for exam-
ple, many words in the Sinitic dataset are monosyl-



labic, and therefore on average shorter than those in
the Germanic and Romance datasets. We therefore
also use a normalized edit distance that divides edit
distance by the length of the gold word. We also
report on the accuracy of the reconstructions, i.e.
the rate at which the edit distance is 0.

Finally, List (2019) notices that to properly eval-
uate the robustness of PFR systems, we should
also evaluate their ability to infer patterns of pho-
netic shifts by measuring the structural similarity
of predictions, rather than the surface level similar-
ity. For example, PGmc nouns (singular number;
nominative case) may have one of various endings,
including ‘-az’ and ‘-iz’. Say our system consis-
tently predicts ‘-ok’ and ‘-ek’ for nouns with these
stems respectively. Even though the endings would
have a maximum edit distance of 2, the system
has nevertheless successfully reconstructed a mor-
phological pattern from the data that could have
plausibly resulted from historical sound shifts. To
address this, List (2019) proposes using B-cubed
F-scores (Amigo et al., 2009) to measure the struc-
tural similarities of words.

6 Results
6.1 Initial findings

When comparing results across datasets the edit
distance is not directly comparable, since as men-
tioned earlier, different datasets have different av-
erage word lengths. Instead we should focus on
the NED as the comparable metric of how well a
model trains on a given dataset. The results are also
averaged over 10 training and testing sessions on
both architectures. Nevertheless, we can see from
Table 4 that our dataset performs the worst on all
metrics, with a 19.5% difference in NED between
our Germanic orthographic dataset and the worst
baseline (Sinitic). We should also mention here,
that due to time constraints we were unable to tune
the models’ hyper-parameters, and as such, used
the same ones as Kim et al. (2023) for the Romance
dataset. This is likely to have contributed to our
dataset’s under-performance.

On BCFS, the difference between the Sinitic and
orthographic Germanic results is smaller at a 9.8%
difference. This implies that the Germanic lan-
guages are descended from relatively more regular
sound changes when compared with the Sinitic lan-
guages. It is also notable how Kim et al.’s (2023)
transformer model performs better than Meloni
et al.’s (2021) RNN model across the board.

mmm orthographic
phonetic
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Figure 4: Changes in NED when training the trans-
former model on datasets with all the words of a given
language removed. Data is averaged over 5 runs. Error
bars indicate the standard deviation.

Similarly to the Romance dataset, both models
perform better on the orthographic dataset. This is
likely due to the fact that spelling tends to be more
conservative than pronunciation and more strictly
adheres to the historical phonological patterns. The
patterns of phonological change would therefore
be more obfuscated in the IPA data. Alternatively,
the difference in performance could be simply due
to the smaller alphabet of orthographic characters
than of phonemes as the same letter could corre-
spond to multiple allophones.

6.2 Contributions of languages

Given the scarcity of cognate datasets, it is worth
investigating whether all languages contribute
equally for automatic proto-form reconstruction.
We do this by training the transformer model on
our dataset, but removing all the cognates from
each of the languages, one at a time. Intuitively,
we expect the best results with languages spread
across all branches of a given family tree, but in
this experiment we will try to quantify whether this
is actually true, and if there is any benefit in includ-
ing, say German over Dutch despite their common
origins. This information could be then used to
guide decisions of which languages to include in
future cognate datasets.

Surprisingly, Figure 4 shows that removing cer-
tain languages from the cognate-sets can improve
the model’s performance. The orthographic data
seems to imply some connection between the lan-
guage phylogeny and potentially superfluous data.
German and Dutch, alongside Danish and Swedish



Dataset Model ED | NED | Acc. % T BCFS 1
Germ. (ortho.) RNN (Meloni, et al.) 1.5962 + 0.2701 + 34.52% + 0.6590 =+
' ' 0.0418 0.0086 0.22% 0.0040
Transformer (Kim, et al.) 1.5586 + 0.2635 + 37.55% + 0.6858 —+
0.0397 0.0076 0.10% 0.0032
Germ. (phon.) RNN (Meloni, et al.) 1.7335+  0.2762 + 36.82% = 0.6328 =+
' ' 0.2585 0.0143 0.67% 0.0088
Transformer (Kim, et al.) 1.6551 +  0.2666 + 37.45% + 0.6474 +
0.0539 0.0096 0.30% 0.0048
Rom. (ortho) RNN (Meloni, et al.) 0.5958 &+ 0.0772 + 69.74% + 0.8913 +
' 0.0083 0.0013 0.23% 0.0016
Transformer (Kim, et al.) 0.5568 + 0.0724 + 71.15% + 0.8994 +
0.0086 0.0013 0.38% 0.0015
Rom. (phon.) RNN (Meloni, et al.) 0.9670 &= 0.1229 + 52.09% = 0.8293 =+
) ’ 0.0194 0.0020 0.59% 0.0024
Transformer (Kim, et al.) 0.9027 + 0.1146 + 53.16% + 0.8421 +
0.0194 0.0021 0.66 % 0.0029
Sinitic RNN (Meloni, et al.) 1.0720 £ 0.2432 + 3547% + 0.6747 +
0.0536 0.0121 1.40% 0.0166%
Transformer (Kim, et al.) 0.9814 + 0.2204 + 39.50% + 0.6971 +
0.0437 0.0093 3.02% 0.0102

Table 4: Evaluation of training our Germanic cognates dataset and the baseline datasets on the two prot-form
reconstruction models. Results are averaged across 10 runs, each trained using the same hyperparameters but on

different random seeds.

are the two pairs of languages that diverged most
recently from each other (Figure 1). These are also
the ones that improve the model’s performance
when removed, implying that they could be su-
perfluous as their closest relative already captures
any relevant information passed down from PGmc.
This trend, however, is weaker with the phonetic
data as removing.

The outlying data point here is English, which
goes from having a positive contribution in the or-
thographic experiments, to a negative contribution
in the phonetic experiments. It seems that English’s
notoriously archaic orthography, despite frustrating
many language learners, is useful for reconstruct-
ing PGmc. Contemporary English pronunciation
has merged many sounds (e.g. the graphs ‘ee’,
‘ea’, ‘ie’, ‘ei’, ‘e’, ‘i’, ‘y’ could all represent the
phoneme /i/ in English) making it harder for the
historical sounds to be reconstructed.

The only two languages that don’t result in an
improvement in NED for either dataset when re-
moved, are Icelandic and Gothic. This implies
that they are necessary for accurate reconstructions
of PGme. Again, we can look to Figure 1 which
shows these two languages splitting off from their

relatives earliest. These languages could also be
indispensable due to how Gothic was spoken closer
to the time of PGmc than the modern languages,
and how Icelandic is a very conservative being mu-
tually intelligible with Old Norse in their written
forms (Leonard, 2011). The archaic aspects of both
these languages mean that they preserve many of
the features present in PGmc which the model is
able to pick up on and use in reconstruction.

6.3 Culling small cognate-sets

To attempt to improve the quality of our dataset, we
propose culling the entries in the dataset with only
a few daughter cognates. These entries may intro-
duce spurious patterns that the model learns, lead-
ing to over-fitting. Moreover, using entries with
many cognates allows the sound changes to be con-
textualized against the other daughter languages.
This maps sound changes across the languages, al-
lowing the model to more easily identify diverging
sound shifts.

Figure 5 shows that on the orthographic data, the
transformer model performs best when removing
entries with only 1 descendant cognate, achieving
a minimum NED of 0.2188. On the phonetic data,
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Figure 5: NED of the transformer model when trained
on the Germanic datasets with entries containing a min-
imum number descendant cognates. The size of these
reduced datasets is also plotted in green. NED is av-
eraged over 5 runs. Error bars indicate the standard
deviation.

the same model performs best when removing the
entries with fewer than 4 cognates, with a minimum
NED of 0.2275. This shows that even though we
have reduced the size of the datasets, the model is
better able to learn the patterns between cognates,
resulting in better reconstruction. When compared
to the baselines, our minimum NED is now below
that for the Sinitic dataset. Furthermore, BCFS for
the best performing reduced datasets is 0.7142 and
0.7000 for the orthographic and phonetic datasets
respectively; above that of the Sinitic dataset. This
shows that the reduced datasets allow the model
to better infer structural patterns from the data as
well.

Unfortunately, training on these reduced datasets
does not generalize to testing on data with the
sparse entries included. Attempts at training the
transformer model with the sparse entries removed
but testing on the full range of entries, yielded re-
sults worse than training on the full dataset.

6.4 Error Analysis

We next analyze the errors made by the transformer
model on the full phonetic Germanic dataset. The
errors were extracted using the Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970), which
calculates edit distance but also provides an align-
ment of the two sequences by backtracking through
the dynamic algorithm matrix. During this back-
tracking, insertions, deletions and replacements are
identified.

The most common source of errors by far was
the inability for the model to predict verb and noun

endings. Verb infinitives in Proto-Germanic most
commonly have the endings ‘-ana’ or ‘-ijana’. The
model was often unable to predict correctly which
verb ending was correct, and so a large number of
insertions and deletions matched the ‘ij’ difference
between the two endings. The other main source
of errors corresponds to noun endings which in the
nominative, singular form found in our dataset may

LI . |

take any of the following endings: ‘-az’, ‘-iz’, ‘-uz’,
‘-0, *-0’. The model’s inability to correctly predict
which class of noun a reconstruction belonged to
was reflected in the many insertions, deletions, and
replacements resulting from confusion between the

endings.

Another conspicuous source of deletions was
that of the phoneme /x/, written ‘h’ in the stan-
dard PGmc orthography. This phoneme appears
to have been elided or merged with other sounds
in most of the Germanic languages and does not
appear in modern pronunciation. For example, take
the PGmc word ‘*tanhuz’, cognate with English
‘tough’, Dutch ‘taai’, and German ‘zidh’. While
the orthography of English and German preserve
the sound, in English the corresponding digraph
‘gh’ is now pronounced /f/, while the German ‘h’
is silent. In fact, deletion of the ‘h’ graph from the
orthographic reconstructions are much rarer than
for the corresponding /x/ phoneme, showing how
archaic pronuncations are preserved in orthogra-
phy. The problem of phoneme elision is one that
linguists also struggle with as it is very difficult
to reconstruct a sound that is no longer present in
a modern language. This problem is further ex-
acerbated in machine learning methods that lack
the domain knowledge of how elided sounds leave
vestigial traces in modern pronunciations.

A similar set or errors arose with the phoneme
/n/ which was inserted and deleted in many of the
predictions. This can be traced to the fact that
Proto-Germanic has nasalized vowels unlike any of
its daughter languages. These nasalizations were
either removed or fully pronounced as /n/ in the
daughter languages, making it difficult to predict
their occurrences.

Finally, we see how exclusively giving the trans-
former model phonetic information is a limitation.
For most of the compound words included in the
dataset (e.g. winedrunken, starblind, mereswine,
neighbor) the model gives wildly inaccurate pre-
dictions. The model is unable to infer the mor-
phological information that linguists can directly



utilize.

6.5 Pattern Learning

Despite the errors, the transformer model does suc-
cessfully pick up on many of the historical patterns
of phonetic change. A sample of these are shown
in Table 5. The Proto-Germanic sounds ‘sw’, ‘b’,
‘au’ and ‘eu’ have systematically diverged, consis-
tently showing up in the modern languages in their
diverged forms. Table 5 shows how the model is
able to correctly predict the correct ancestral sound
from their modern correspondences. Even for vow-
els, where some of the sound shifts are less con-
sistent, the model successfully infers the patterns
and applies them to its predicted reconstruction.
This is the essence of the comparative method for
reconstructing proto-forms, which the model has
managed to capture.

We can also tell that the model has truly learned
these patterns because it applies them too often.
The model wrongly predicts the reconstructions
“*seuniz’ and ‘*krabjanag’ for the golden Proto-
Germanic‘*siuniz’ and ‘*krafjang’ as it notices the
same sounds in the daughter cognates that would
normally correspond to a ‘iu’ or a ‘b’ respectively.
This is a clear indication that the model has learned
phonetic divergence patterns.

Aside from orthographic and phonetic patterns,
the model is also able to pick out some morpholog-
ical patterns. The chief example of this is how the
model recognizes how German and Dutch verb
infinitives ending in ‘-en’ correspond to Proto-
Germanic infinitives ending in ‘-ang’ or ‘-ijjana’.
Whenever a Dutch and a German word ending in
‘-en’ appeared in the input, the model would predict
either verb ending with 94.5%accuracy.

6.6 Novel Predictions

Table 6 contains a series of cognates for which no
PGmc reconstruction is available. No correspond-
ing PGmc entries for these words exist neither in
Wiktionary nor in Kroonen’s (2013) dictionary. For
each set of the cognates in Table 6 we had the trans-
former model predict a PGmc reconstruction. Of
course, we should not take these predictions as
ground truth and a linguist would have to verify
their correctness. However, this remains a proof
of concept for how machine learning models can
aid linguists in reconstructing proto-forms when
a full set of cognates is not available. And, in the
author’s opinion seem quite convincing.

7 Conclusion

We have created the first dataset of Germanic lan-
guage cognates which we hope will be used to
further research into automatic proto-from recon-
struction. While initially under-performing when
used to train state-of-the-art proto-from reconstruc-
tion models, we show that removing entries with a
small number of cognates improves the robustness
of the dataset as we effectively remove spurious
patterns. In the end, we managed to train a model
with resulting normalized edit distance better than
Kim et al.’s (2023) Sinitic dataset.

Moreover, we show how a transformer model
trained on our Germanic dataset produces regu-
lar errors arising from lost phonemic information
in the daughter languages. Conversely, the same
model is able to learn patterns of historical sound
shifts to accurately predict certain phonemes in
Proto-Germanic words. Lastly, we show models
trained on our dataset can be used to produce novel
Proto-Germanic reconstructions found nowhere
else in the literature.

7.1 Limitations and Further Work

The main limitation of the dataset is sparsity of
many of the cognate-sets. As explored in Section
6.3 models trained on a reduced dataset with fuller
cognate-sets performed much better. The issue of
sparsity can be addressed by expanding the set of
languages we include in our dataset beyond the 7
used in this paper. Moreover, by including other an-
cestral languages like Old English and Old Norse
that are closer to Proto-Germanic we should ex-
pect a marked improvement in performance. We
can additionally make use of other etymological
resources beyond Wiktionary to extend the number
of entries in the dataset. However, the lack of good
APIs for most dictionaries would make collecting
information more difficult and time consuming.
Moreover, a key source of error was the lack of
morphological and grammatical information in the
dataset. Using the architecture of the models dis-
cussed, there is no way of accurately predicting the
noun and verb endings present in Proto-Germanic
from the phonetics and orthography of its descen-
dant languages. An alternate architecture such as
that described by List et al. (2022b), allows for
additional information, such as the part-of-speech
tags, to be included in the input sequences. Includ-
ing noun gender, or verb irregularity information
could give the machine learning model the extra



Danish Dutch English German  Icelandic Swedish  Predicted Gold
PGmc PGmc
- zweer - Schwiher - SVir- swerho swehuraz
svaerd zwaard sword Schwert SVErd svird swerda swerda
- zwinden - Schwinden - svinna swindang  swindang
- zZwingen swing Schwingen - svinga swingang  swingana
- Zwijmen - - - svimma swimang swimana
vave weven weave weben viva vefa wabjang webang
navle navel navel nabel nafli navel nabulaz nabal6
s@lv zilver silver silber silfur silver silubraz silubra
forgive vergeven  forgive vergeben  fyrirgefa  forgiva fragebana fragebang
kreve - crave - krefja kriva krabjanag  krafjang
kgbe kopen cheap kaufen keypa kopa kaupijang  kaupijana
- - - - smeyja smoja smaugijang smaugijang
- tomen teem zaumen teyma - taumijang taumijang
- honen hean hohnen - - haunijana  haunijang
- zomen - sdumen seyma - saumijang saumijang
syde zieden seethe sieden sjoda sjuda seupang seupang
lyd - - - hljod ljud hleupa hleupa
byde bieden bid bieten bjoda bjuda beudang beudana
gyde gieten gut gieten gjota gjuta geutang geutang
syn - - - sjon syn seuniz siuniz

Table 5: The transformer model’s predictions of regular sound patterns across the cognates. The model overextends

these patterns in the case of “*siuniz’ and ‘*krafjang’.

Danish Dutch English German  Icelandic Swedish  Predicted
PGmc

- grillen grill grellen - grila grelang

krus kroes cruse Krause krids krus kriis

- laven lave laben - - labona

nar nar - Narr narri narr narzd

snarke snerken snark schnarchen - snarka snarkijang

Table 6: Novel predictions of Germanic cognates.

information needed to deduce these morphological
patterns.

Finally, beyond the scope of this paper, there is
an interest in developing automatic cognate identi-
fication methods in order to create cognate datasets,
especially for less-resourced and extinct languages
where a small lexicon without any etymological
information may be all we have. In our case, such a
system may help identify previously undiscovered
cognates to further extend the dataset. Similarly,
whenever we do not have a golden reconstruction
we have to rely on unsupervised proto-form recon-
struction. State-of-the-art unsupervised models still
lag behind supervised models (He et al., 2022). Per-
forming a similar analysis an unsupervised model
trained on variations of our dataset should give us a

better understanding of how we should design our
datasets to optimize unsupervised learning.
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