An Essay on Partial Evaluation

Advanced Topics in Programming Languages

Offline partial evaluation relies on a binding time analysis to identify which parts of a program are
static and can therefore be specialized. At the same time binding-time improvements are necessary to
enable greater portions of the code to be partially evaluated. Without using n-expansions as a binding
time improvement, a greater burden falls on the programmer to make their code amenable to partial
evaluation.

In Eta-expansion does The Trick Danvy, Malmkjeer and Palsberg perform binding-time analysis as a
series of typing judgments that augment the A-calculus with binding time information. They use 1
-expansion to fully specialize a program such that the only remaining terms are entirely dynamic.
Sperber and Thiemann describe in The Essence of LR Parsing two implementations of a functional LR
parser that can be partially evaluated to yield runtime improvements. However, the partial evaluator
they use does not specialize their parsers sufficiently, leading to the manual introduction of binding
time improvements that could have otherwise been captured using n-expansion.

Danvy, et al’s Binding Time Improvements

Danvy, et al. implement two sets of binding time improvements in their partial evaluator: continuation-
passing style code-motion, and n-expansion. The former improvement is captured by Similix — the
partial evaluator used in The Essence of LR Parsing — and will not be elaborated for the purposes of this
essay.

An n-expansion wraps a term by its type’s corresponding constructor and destructor to add a layer
of indirection to the underlying data. For example, a dynamic pair p of type d is n-expanded to
Zfs_t p,snd py, where an overlined operator denotes that it is static, and an underlined operator is dy-
namic. 77-expansions serve to coerce static terms into dynamic contexts and vice-versa. This is partic-

ularly useful when dealing with partially static data.

Say, we have a static function f which we want to apply so that we can unwrap — and therefore spe-
cialize — it. Moreover, let f take as input a sum of type d + (d x d). Unfortunately, in our program,
when we apply f, our argument to f is some dynamic value v. Applying f @ v would prevent any
specialization here. n-expansion allows us to coerce v into a static value so that we can specialize f:

f@(casevo_fLm%Zm | Ry%ﬁ?fs_ty,myg) P

casevofLz — f@ (Lz) | Ry — f@ (R {fsty, sndy))

Thus, we have one example among many, showing how n-expansion works as a binding time improve-
ment to enable further specialization.

Scheming the Type System

The implementation of the LR-parsing algorithms given by Sperber and Thiemann is given in the
Scheme language, which has a much more complicated type system compared to Danvy, et al’s. In
order to apply the desired n-expansion binding time improvements to the LR parsers, we must there-
fore extend Danvy et al’s framework. Specifically, the parsing algorithms make use of let-expressions,
scoped definitions, and recursive functions.

Let-expressions can simply be transformed into A-expressions as follows:

letx = ey in ey v (Az.ey) €



The Scheme programs given in Sperber and Thiemann’s paper use define statements which create
potentially recursive scoped definitions. One way to implement these would be to simply inline all in-
stances of any scoped variables, eliminating define statements altogether. This, however, may lead to
a lot of code duplication in the residual program whenever such a definition is dynamic. Alternatively,
the binding time analysis could include a second environment holding these scoped definitions with
their corresponding augmented types such that specialization is only done when necessary.

Lastly, recursive functions will require more complex type inference to deduce the binding time types
of these recursive functions. Such type inference is already common in most functional programming
languages and should not add much overhead, but it will need to be augmented for dynamic and sta-
tic types.

With these modifications to Danvy’s two-level A-calculus, we should be able to automatically apply n
-expansions for Sperber and Thiemann’s parsers.

n-Expanding the Parsers

Sperber and Thiemann describe two Scheme implementations of a functional LR parser, a direct-style
“textbook” version, and a continuation-passing style version. The first parser implementation operates
as follows: Given a parser state — a set of LR grammar rules — the function parser reduces a non-
terminal in one of the current state’s grammar rules until it reaches the bottom. Once it cannot reduce
any rules further, it calls act-on which shifts the input of the rules in the current parsing state until
we reach the end. At this point we have fully parsed a non-terminal and we unroll the call stack up to
the non-terminal we finished parsing.

Results of a call to parser are given as a sum type: 1 + (int X int X d), where d is the dynamic type of
the leftover input that has yet to be parsed. Sperber and Thiemann represent the input as a list of tokens
which we can represent as a product comprised of the head and tail of a list. To be able to partially
evaluate this first parser, both parser and act-on must be applied to static arguments. Unfortunately,
act-on takes these parse results as input which are partially dynamic, leading to the residual code
containing fragments like the following:

let result = Reduce(2, 2, input) in
act-on (r-lhs result) (r-dot result) (r-inp result)

Here, the r-xxx functions retrieve the elements of a constructor Reduce element, with the type of (r-
inp result) being d. This means that when we apply act-on it must be done dynamically since one of
its arguments is dynamic, and the partial evaluator is unable to specialize further. The solution, is to use
n-expansion on the argument as shown above, producing (fst (r-inp result),snd (r-inp result)).
This argument is now static and we can therefore specialize the body of the act-on function. Sperber
and Thiemann get around this issue by adding rewriting rules as part of the Similix postprocessor.
Having to do this, however, places an undue burden on the programmer to extend the partial evaluator

themselves in order to get good results.

Instead of unrolling the stack once we finish parsing a non-terminal, the second implementation of
the LR parser keeps a list of continuations that we can jump to. This naturally results in a faster im-
plementation as we no longer have to unwind for every time we shift or reduce a symbol. However,
since the continuations are dynamic, Sperber and Thiemann run into a problem here, as any operation
that uses them cannot be specialized. For example, when extracting a continuation which we want to
apply from the list of active continuations, their parser gets stuck:

list-get-n (cons cO continuations) (length (item-rhs item))

The continuations are partially dynamic since the parser state to which they jump back to is dependent
on the input. Hence, the application to the function cons is marked as dynamic which infects the rest of



the expression as being dynamic. However, the size and composition of the list only depends on static
data, i.e. the rules of the grammar, and so we should reasonably be allowed to extract elements from
the list of continuations during specialization. Once again, we can n-expand the dynamic function c0
such that it can be used in a static context:

list-get-n (cons (Xm. cO @x) continuations) (length (item-rhs item))

Now, the application to cons is static and the partial evaluator can reduce the rest of the expression.
Thus, we see the versatility of n-expansion as it is able to coerce any dynamic value to be used in any
static context, and vice versa.

Learning to do ‘The Trick’

We further see in their paper how Sperber and Thiemann manually introduce “The Trick’ as a binding
time improvement for both implementations of the parser. “The Trick’ expands a dynamic value in a
static context into cases for each of the values it may take. So given a dynamic sum value v found in
context C'[v], The Trick performs the following transformation:

Clv] ~» casevof Lz — Cla] | Ry = C[y]

This allows the now static expressions C[x] and C[y] to be specialized. Danvy, et al. notice that this
transformation is simply the n-expansion of the sum type coupled with a CPS transform, such that
their binding time analysis and improvements are already able to capture this behavior. Their frame-
work, thus, further relieves pressure from the programmer as they do not need to manually introduce
the Trick.

In cases, such as a parser, where the set of values that v may take is quite large (e.g. the set of terminals
and non-termnials), applying The Trick in this way manually would bloat the size of the source code
immeasurably, introducing multiple points of failure. This is why Sperber and Thiemann use a varia-
tion of the Trick that loops through all possible values of v, instead of having a giant case expression.
While this reduces the size of the code, it still requires the programmer to identify instances in their
code where The Trick applies and introduce it properly. This need for a manual implementation of The
Trick reveals a deficiency in the partial evaluator, one that can be remedied by the introduction of 7-
expansions.

In conclusion, we have seen how many of the binding time improvements that Sperber and Thiemann
have to manually implement in their implementations of a functional LR parser can be manually in-
troduced using the n-expansion Danvy, et al. describe for their type system. Nevertheless, this type
system is quite primitive and would require extending in order to be efficiently applied to more prac-
tical programming languages. For example, one drawback is the large case statements that “The Trick’
introduces without any looping expressions. Nevertheless, as n-expansion can be applied at every pro-
gram point, it makes for an extremely versatile binding-time improvement resulting in much more
extensive partial evaluation. Thus, n-expansion is necessary for a partial evaluator that does not bur-
den the programmer with the task of enabling specialization themselves.



	An Essay on Partial Evaluation
	Advanced Topics in Programming Languages
	Danvy, et al.s Binding Time Improvements
	Scheming the Type System
	η-Expanding the Parsers
	Learning to do The Trick



