An Essay on Dependent Types

Advanced Topics in Programming Languages

Pattern matching in languages with dependent types must be able to retain consistency between de-
pendencies within different terms in a pattern. As these dependencies introduce information that is
only useful at compile-time, we should also figure out how to eliminate any runtime agnostic compu-
tations in order to improve program efficiency.

In his PhD thesis Towards a practical programming language based on dependent type theory, Norell
defines Agda, a dependently typed functional programming language that can perform pattern match-
ing over inductive families. They aim to reduce the computation needed to match at runtime by
dependent types’ overhead to acceptable levels. They define a dependently typed calculus with pattern
matching alongside an algorithm for infering erasure, the property for a term to be unnecessary at run-
time. Their evaluation shows how using erasure makes both the compiler and the resulting program
run faster. Through an example, in this essay I show how their respective pattern matching algorithms
reduce runtime overhead.

Dependent pattern matching

In a dependently typed calculus, we can form types from terms. Take the following Agda data type for
vectors and their corresponding append function with all indices made explicit:

data Vec (A : Set) : (n : N) - Set where
[1] : Vec A zero
cons : (n : N) - (x : A) - (xs : Vec A n) - Vec A (suc n)

app : {A : Set} -> (mn :N) -Vec Am-Vec An - Vec A (m+ n)

app m n [] ys = ys

app m' n (cons m x xs) ys = cons (m + n) x (app m n Xs ys)
We have made the Vecs length indices m and n explicit. When matching on the first pattern, the value
of m can be deduced from the first vector []. This first pattern could therefore be written as zero n
[1 ys without loss of generality. Thus, we can see that when pattern matching on dependent types,
patterns can be iteratively refined as we glean more information from the dependencies.

We can similarly resolve the second pattern. Matching on the first vector tells us that the first argu-
ment must be suc m, by the definition of cons. If we had instead done the pattern matching based on
the first argument suc m, then we would have been able to deduce that the first vector’s length index
would have been m. This shows how dependent pattern matching can be non-linear since depending
on the order in which we match the patterns we information in a different order. The non-linearity
can be traced to the fact that we could have multiple instances of the same term (i.e. m) on the left-
hand side of the pattern. Using the same algorithms as we would for a standard functional language
would therefore not work as these can only have a single instance of each variable in a pattern’s left-
hand side.

Inaccessible Patterns

Norell introduces the notion of inaccessible patterns, i.e. those that arise from the instantiation of
indices, like zero and suc m above. Inaccessible patterns only provide information useful for compile-
time type checking and so they can be ignored at runtime. Moreover, we note that repeated pattern
variables only arise within these inaccessible patterns. Thus, we have a well-formed linear pattern if

we only focus on the accessible patterns. We augment the definition of app to explicitly show the in-
accessible patterns marked by a . in Agda:

app : {A : Set} -> (mn :N) -Vec Am-> Vec An-Vec A (m+ n)
app .zero n [] ys = ys
app .(suc m) n (cons m x xs) ys = cons (m + n) x (app m n XS ys)

The pattern matching algorithm

A dependent pattern matching algorithm needs to ensure that all patterns are well typed (i.e. that all
patterns have the type specified in the function declaration), and to resolve all inaccessible patterns.
Norell defines an algorithm that does just that. It takes a configuration of the form (p,o : A — T")
where I' are the function’s argument types, o is the mapping of pattern variables to terms and p is the
user-defined patterns matching those in ¢. The algorithm then iteratively refines this configuration
until only variables are left in the pattern. To see how this is done we use the first clause of our running
example, where I' = (mn : N)(zs : Vec A m)(ys : Vec A n):

<mn [] ys, m;n;xs;ys:I‘—>F>

To refine this configuration, we identify a constructor pattern to ensure that it can legally be used
to instantiate a variable of the corresponding type. In this case we have no choice but to check []
which should have the type in our context I" as (xs : Vec A m). The output of this SPLIT operation is
a new mapping that instantiates the variable alongside the necessary substitutions so that maintin its
well-typedness. This, is where we can further instantiate our dependencies, producing the inaccessible
patterns. For our clause above SpLIT requires the following:

xzs:Vec Am Vec, : N — Set [, : Vec A zero
UNIFY (m = zero : N) = [m = .zero]
0 = [m := .zerol;n; [xs := [|]; ys

SPLIT(p,;[;p,,T) = 6: (n:N)(ys: Vec An) - T

This new pattern mapping J is then matched against our pattern and we see that it indeed matches
with m n [| ys albeit with the substitution m := .zero. Here we see that we have identified m as an
inaccessible pattern. The resulting configuration is:

(m n xs ys, .zero;n;|[|;ys: (n:N)(ys: Vec An) = T)

Seeing as our pattern is now comprised entirely of variables, we are done. Perfoming this procedure on
the second clause results in a similar result where the first argument is identified to be the inaccessible
pattern .suc m:

(mn xsys, .sucm’;n;consm’ x xzs’5ys: (m’ n:N)(x: A)(xs’" : Vec A m')(ys: Vec An) = T)
So just how non-dependently typed programming languages discard type annotations after the first

stages of compilation, Agda can discard the extra compile-time information afforded by the inaccessi-
ble patterns.

Type erasure

.....

programs. Sticking with the same example, we notice that in the second pattern of our append func-
tion, we are having to perform unary arithmetic to satisfy the length indices of the right hand side:

app .(suc m) n (cons m x xs) ys = cons (m + n) x (app m n XS ys)

As unary arithmetic is linear in complexity, this raises our append from being linear in the number of
elements, to being quadratic. Thus, we see that using inaccessible patterns is insufficient. To preserve

.....

matching clauses the terms that only serve a purpose at compile-time.

They introduce erasure annotations which we attach to any name binding and any function or con-
structor application on throughout the entire program. I show here how they would attach for the
append function:
app : {A: Set} = (m n iy 3 N) = (zs:, Vec Am) — (ys :5 Vec An) — Vec A (m +n)
app 607 ng[]lgys=uys
app g -(suc 13 m) 19 1 g3 (CONS 14 M 15 T 16 TS) 17 YS = ...
These type annotations have been numbered with erasure variables. While the algorithm runs, these
variables have their dependencies tracked and get evaluated such that they collapse to either E or R.

These respectively correspond to a binding or application that can be erased, or one that should be
retained at runtime.

The erasure algorithm

.....

annotations. To transfrom user code that omits these annotations to code that is fully annotated, they
describe an algorithm as a pipeline of code transformations.

We first transform the user code into the calculus, adding all unknown erasure annotations (e):
app: {A:, Set} = (mn ‘oo N) — (zs:, Vec Am) — (ys:, Vec A n) — Vec A (m+n)
app . 0,.n,[],ys=uys
app , .(suc ,m),n, (cons ,m,z,xs),Ys

=(cons , (m+n),z,(app « M N ¢ TS, YS))

Next, we replace all unknown erasure annotation with unique erasure variables:
app: {A: Set} — (mn:y3 N) — (zs:4 Vec Am)— (ys:5 Vec An) — Vec A (m +n)
app ¢ 07 ng[lgys=ys
app 1p -(Suc 13 M) 15 n g3 (CONS 1y M 15 T 16 TS) 17 YS

= (cons 15 (M+n) 19 T 39 (APP 91 ™ 33 M 53 TS 93 YS))
A set of constraint generating rules act on this program to substantiate the erasure annotations. These

constraints are of the form G — r saying that if all annotations in G are retained then so must r be
retained. For example, we have the erasure inference rule:

'FF:(g(nyo)—pl|A F'FX:g0lX

APP
'FF X:(gpn—>X]|AUZUt 4 s

Without explaining the specific details, applying this on the annotation app ,; m produces the con-
straints {2 — 21} U {21 — 2}, where 2 is the corresponding type annotation at the function’s head.
The resulting set of constraints is then solved as a logic program containing only Horn clauses that
can be solved in linear time, yielding the following:

app : {A g Set} = (mn ‘EE N) — (zs :g Vec A m) — (ys :g Vec A n) — Vec A (m +n)

app £0pngllrys=uys
app g .(suc gm) gn g (cons gmpx g S) g YS
= (cons g (m+n) gz g (app Mg n g TSR YS))

Finally, type and erasure checks are performed to ensure the dependently typed program is consistent.
Then, defining the erasure translation as (e), the terms are transformed by recursively applying era-
sure rules which include (F' 5 X) = (F) and (F' p X) = (F) (X). Our resulting program is now:

app : {A: Set} — (xs:Vec A) — (ys: Vec A) — Vec A

app [Jys=ys
app (cons x xs) ys = (cons = (app xs ys))

This is exactly the program that we would have written in a standard functional programming lan-
guage. In particular, we note how the expensive unary addition of the output cons is gone. Thanks to
erasure, we are able to use the strictness of a dependent type system that ensures our Vecs all have the
appropriate length, without sacrificing performance. Whereas inaccessible patterns saved the runtime
from checking some compile-time information, erasure allows us to eliminate it altogether.

Does erasure measure up?

The TT, calculus has had the benefit of time, building up on recent research discussing the erasabilty
of dependent types. We have shown theoretically how it greatly reduces the computation required by
produces code that is asymptotically faster. In most of these benchmarks, more than half of the erasure
annotations are marked E showing how powerful this analysis is in reducing runtime work.

However, they do not compare their system against other established dependently typed languages
such as Agda and Idris that do perform some irrelevance analysis to reduce code size. They do argue,
however, that irrelevance in these languages is too loose, ignoring type indices that should be enforced.
For example, our erasure analysis removes all numerical indices from the app function after it has been
type checked. If we were to mark the index of Vec (A : Set) : .(n : N) -» Setasirrelevant in Agda,
then we would lose the guarantee that the output of app is of the correct length. As erasure is done
dependently on the entire program we are ensured the consistency imposed by the type dependencies.
Therefore, we would expect that a language employing the TT, calculus should perform better than
an Agda program that enforces the indices properly (i.e. doesn’t mark them as irrelevant).

In conclusion, while powerful, the “dependent” in dependent types proves to be quite costly if not
treated properly. Ideally, like simple types, we want dependent types to only be used at compile-time
in order to not slow down the resulting program. Norell identifies that dependencies in the indices of
dependent types can be ignored for pattern matching at runtime. However, in many cases, the resulting
program still retains the computation of indices in a pattern match clause’s output, potentially mak-

.....

annotations, allowing for compiled programs to preserve their asymptotic complexity.

	An Essay on Dependent Types
	Advanced Topics in Programming Languages
	Dependent pattern matching
	Inaccessible Patterns
	The pattern matching algorithm
	Type erasure
	The erasure algorithm
	Does erasure measure up?

